
Architecture

Group 21
Generic Games

Josh Thomas
Andrew Palombo

Oscar Gunn
Scarlet Desorgher
Immanuel Ghaly

Madeleine Nielsen

mailto:jt1920@york.ac.uk
mailto:ap2179@york.ac.uk
mailto:sgd516@york.ac.uk
mailto:ihag500@york.ac.uk
mailto:mn1013@york.ac.uk

Our state diagrams [fig.1-7] and class diagrams [fig.9-10] were made using LucidChart,
which was integrated into our shared Google Drive.

Our CRC cards [fig.8] were made in Microsoft Word.

Overall we have used an Object-Oriented Architecture; this is what worked best for our team
as we had a limited time scale to try and organise the project which can require a fair
amount of overhead. It also allowed us to code and design semi-concurrently as the
programming team only needed a limited amount of documentation to get started.
The nature of object-oriented architecture meant our team could program different classes
separately without much need for discussion between team members whilst programming
was happening. The team would then regularly discuss how various features had been
implemented to ensure that it didn’t impact any other classes or functions. This meant that
our diagrams had to be quite flexible, which did make accurate documentation harder, as the
implementation was open to change. However, the size of our team made this reasonably
easy to handle, and we used systems such as messaging and post-it notes to keep each
other up to date.

Our CRC cards [fig.8] were useful in laying the groundwork for our first class diagrams
[imozwastaken.github.io/architecture.html#class]. Our CRC cards layout our user
requirements well, making sure our class diagrams do the same. After we made good
progress with the CRC cards, we translated them into class diagrams [fig.9,10]. This took
effort from the whole team as this is when we started to make concrete implementation
decisions. This means everyone had to understand how we organised the objects and why.
Even though our class diagrams went through many changes, it was very beneficial to have
a vague starting point.

One example of a change is the Screen interface. This was a feature of LibGDX that the
design team were not aware of, we thought we would have to make our own Screen Class
[fig.9]. Instead, our three main screens (MenuScreen, CreditsScreen, GameScreen)
implement the Screen interface.

It also took a lot of consideration whether or not the separate stations would be their own
classes, or attributes within the GameScreen class. We had them in separate files [fig.9] as
we underestimated the reliance of the stations on the cooks. Having them as attributes
[fig.10] meant that the stations could always know the state of the cooks. This is important as
the stations react to the cook’s interactions with it. This meant we could more easily
implement the requirements: UR_COOK_ACTION, FR_MOVE_COOK, FR_USE_STATION.
As without this the user would not be able to move the cook in appropriate ways. Cook and
station interactions are also shown in our state diagram [fig.1], here it demonstrates
UR_STATION_ACTION and FR_DROP_RESTRICTION, as the ingredients are prepared
only if the cook has the right ingredients in their stack.

Another example would be in relation to the recipes. Our second design [fig.9] shows that
the recipe classes would be independent of each other and not extend or implement from
anywhere else. We soon realised it would be beneficial to include a Recipe interface [fig.10]
into the design. This meant we could loosely link the recipes together and still have flexibility
as our code was still changing a lot at this point. Without the recipe interface it would be hard
to complete FR_SERVE_DISH and UR_CUSTOMER_VIEW. FR_SERVE_DISH is shown in
fig.7 with FR_SERVING_STATION. A window pops up when the serving station is selected,

http://imozwastaken.github.io/architecture.html#class

and the recipe is made if and only if the needed prepped ingredients are in the cook's stack.
This is only possible because we made the Recipes use the type Ingredient.
There was also much discussion regarding class relationships, especially between Order
and Customer. Initially we thought that order would extend Customer, but as the order
system was implemented we knew that this was incorrect. The Order class is about the
object on the screen and therefore does not need to inherit from Customer. Customer uses
the Order type to instantiate a customer’s order.

Our user requirements, UR_SWITCHING_COOKS, FR_SWITCHING_COOKS, are shown in
fig.6. This diagram shows how the user can select a cook, done in the game by pressing “1”
or “2”, and then move it to another area on the screen. This is done by clicking on the
desired location (UR_MOVING_COOK). Our architecture supports this as we have a class
Cook which has an attribute which controls the state of the cook regarding if it is in use or
not. Without this the user could move the cook at any point.
UR_COOK_STACK is shown in fig.4, with the stack constraint. Fig.4 also shows how the
user can remove things from the cook’s stack by clicking the bin. This is different from our
system requirement FR_VIEW_PANTRY as this says the bin icon should be in the pantry
window. However, after consideration, we decided that this icon would be too small and
there would be too many functionalities in one space. UR_REPUTATION and
UR_TIME_CUSTOMERS are represented in fig.3. An order is only completed if the
customer receives the correct order. The user’s reputation is affected by whether or not the
order is completed within the given time.

Another change caused by our architecture were the requirements FR_SERVE_DISH and
FR_INCOMPLETE_DISH, the requirements imply that the user will have a stack containing
all the ingredients prepared throughout the gameplay which can then be served in any order
to the customers. Due to the Object-oriented nature of our programming, we ended up giving
each individual cook their own stack containing whichever specific ingredients they are
preparing and then they serve that dish to the customers. This changes the gameplay
slightly in that each cook can only work on one dish at a time. However, we did also discuss
how that would be changed in future development and because of our coding architecture it
would be a simple case of merging the stacks in the background in a way that the user
wouldn’t even notice.
Our system requirement FR_TAKE_PREPPED_INGREDIENT is implemented slightly
differently than specified. Once the preparation time ends the prepped ingredient is
automatically added onto the stack.

Class GameScreen Implements:
UR_SWITCHING_COOKS, UR_COOK_ACTION, UR_STATION_ACTION,
UR_MOVING_COOK, UR_CUSTOMER_VIEW, UR_TIME_CUSTOMER,
UR_REPUTATION, FR_DIFFERENT_COOK, FR_DESTINATIONS, FR_USE_STATION,
FR_DROP_RESTRICTION, FR_VIEW_PANTRY, FR_EXIT_PANTRY,
FR_SERVING_STATION, FR_EXIT_SERVING_STATION, FR_STATION_ACTION,
FR_STACK_LIMIT, FR_SFX, FR_REP_DISPLAY, FR_REP_LOSS

Class Cook Implements: UR_COOK_STACK, UR_MOVING_COOK,
FR_COOK_RESTRICTIONS

Class Ingredient Implements: FR_TAKE_PREPPED_INGREDIENT

Class Customer Implements: FR_CUSTOMER_SPRITES, FR_ORDER_TICKET

Class EndGameScreen Implements: FR_SCENARIO_TIME, UR_SCENARIO_TIME

All classes implementing from recipe Implement: FR_SERVE_DISH

These discussions have led to many changes in our Class diagrams [fig.9], which is why our
agile method has been so helpful. During scrummages, we have been able to update the
different teams and documentation on the changes, as well as have discussions about which
changes are necessary and which implementations will be most effective. A lot of the time,
we found that the programming team could be a little short-sighted in the game
implementation, focusing just on the bits they needed to get done; however, the
object-oriented structure allowed the other teams to draw their attention to future changes
that will need to be made and how to implement the current program to make that as easy
as possible.

We struggled to pick a specific architecture and instead stuck with Object-Oriented because
we knew we would be handing the project over to another group. We know that all the other
students are familiar with OOP. It is a very modular programming style allowing for different
functions and methods to be added and changed without impacting the program's
functionality too much. It also lends itself to accurate and in-depth code documentation as
you can include JavaDocs for each Class, each Instance of those classes, each Method
within the class and so on. This allows for a much easier handover as other programmers
can easily see what has been implemented and how.

