
Method Selection and Planning
Group 21

Generic Games

Josh Thomas
Andrew Palombo

Oscar Gunn
Scarlet Desorgher
Immanuel Ghaly

Madeleine Nielsen

Extended by
Group 18
Team B

Olivia Betts
Zac Bhumgara

Nursyarmila Ahmad Shukri
Cameron Duncan-Johal

Muaz Waqas
Oliver Northwood

Teddy Seddon

mailto:jt1920@york.ac.uk
mailto:ap2179@york.ac.uk
mailto:sgd516@york.ac.uk
mailto:ihag500@york.ac.uk
mailto:mn1013@york.ac.uk


We decided that an agile approach to our software engineering would bring us many
advantages, as it speeds up the game development and makes it well-organised and
flexible. This made us approach the development by tackling many small projects spread
across the team. However, we did not allocate specific team roles as needed for the
traditional agile scrum. We did not want a designated product owner or scrum master as we
were all involved with the development and organisation of the project. We also found that
different subteams needed different structures, for instance, the team working on
architecture found that having a flat team structure worked best as we all had the same level
of knowledge and experience so sharing the team responsibilities made so much sense.

We mainly used a shared google drive to organise our files. We chose this for its familiarity
and its compatibility with LucidChart, which we used to make our UML diagrams. Our first
experience with UML was through a google doc extension, which we used to make our Gantt
charts and project breakdown. These diagrams are very simple to make, but the UML
language was not well known to us, and the extension was difficult to use. When we started
to make architectural diagrams, we used LucidChart. It is a visually based tool helping us to
make UML diagrams. We found that using LucidChart through the web browser is much
easier. We also utilised the post-it note feature in LucidChart to keep track of things that
needed to be done, if there were any questions we needed to ask other teams or if individual
team members needed clarification on certain parts of the diagrams. This meant that we
could work in our own time and also see what other people had been up to. When a task
was completed, then the post-it note would be deleted and the discord would be messaged
to let everyone know.

We found this kind of remote cloud based system very useful as it meant we could update
diagrams remotely without needing a meeting as all team members could see any updates.
It also meant that team members could work on the project whenever suited them without
having to update other team members or call a meeting- as we are all students with different
schedules, this worked perfectly for us.

GitHub allowed the implementation team to work locally on their devices and then
collaborate with the other team members. It was more unfamiliar than other tools we used
but proved to be one of the most useful. The team’s website was hosted by GitHub, allowing
it to be accessible by anyone with the URL.

LibGDX was a very new development tool for all of us however we picked it for a number of
reasons. Firstly we found that it supported all the main OS as well as working in browsers. It
also has a very active and big community with a discord where our programming team could
ask for help and advice. It also has some very useful game examples, which helped our
team to get started with how it all works. We considered other game engines like JMonkey
and LITIengine, but we soon realised that LibGDX was considerably more well established
than the others. This meant the community was more active and there were more resources
available.

To organise our meetings and to talk about our project, we communicated over Discord. This
app is familiar to all of us and lets us have chats between our smaller development teams.
We set up several channels to organise our communication which meant the general team
channel didn’t get filled up with unnecessary messages and that sub-team-specific



messages were kept to their respective channels. We also used Discord to host our
meetings over the Christmas break, as the system allowed us to connect calendars so that
we could all see when the meeting was going to be. It also meant that sub-teams could host
their own meetings without needing to coordinate with the whole team.

fig.1

At the beginning of this project, we discussed our strengths and weaknesses regarding the
skills needed to successfully make and document the game. To decide on our team's
architecture, we wrote down all the deliverables [fig.1]. This helped us visualise the workload
so we could split it fairly. It also helped us to follow an agile approach to this project as it
meant we could focus on well organised smaller sub-problems. Individually we put ourselves
forward for these tasks and explained why we were suited to them. Then as a team we
made sure that every member was allocated to roughly 15 marks of the work, and that
everyone would have work to do throughout the 11 weeks. At this point we decided that
having three people coding was better than everyone, as it would ease communication and
technical difficulties regarding pulling and pushing to the repository. Oscar, Immanuel, and
Andrew were to implement the game. Scarlet, Andrew, and Madeleine focused on
architecture. Josh and Immanuel worked on the risk register and mitigation. Madeleine made
the website. Scarlet and Madeleine worked on the method selection and planning. Josh and
Oscar both worked on the requirements.

We stuck to these roles well, but we made sure that we were lenient when needed. If a team
needed support or a task was deemed more time-consuming than assumed, we set more
team members to work on it. This happened mostly with the implementation, as it took more
effort and time than expected. Due to this, Immanuel worked less on the risk assessment
and Oscar worked less on the requirements. Even though this meant the marks were
unevenly distributed, we decided that it was still the best course of action as they both had
worked on their respective tasks enough nearer the beginning of the project.



fig.2

After we decided on our team’s organisation we made a gantt chart [fig.2]. This evolved very
quickly as we soon realised that we were too optimistic with our time frames and our
schedule was unrealistic. At the beginning of the project we were too focused on the
requirements and risk compared to the architecture and implementation. We also were too
shortsighted with our plan and didn’t consider alternatives as seen in our very first gantt
chart [imozwastaken.github.io/snapshots.html#gantt].

There are many differences between our initial plans
[imozwastaken.github.io/snapshots.html] and our final plan [fig.3]. We extended all the
write-ups till the end of the project as there was always new content to be added as we
changed our work. We also made architecture more of a priority. We managed this by
splitting it into smaller tasks and extending the time we were working on them for. We also
decided that we would make state and class diagrams, and CRC cards, but no interaction or
sequence diagrams. In fig.1 there are no CRC cards, and there is an obsolete ‘object
diagram’ task. The class diagrams should also be dependent on or parallel to the CRC
cards.

In fig.1 it shows that the implementation was to start at the end of November. However, this
is incorrect and a simple typing error in UML; implementation started properly around a week
before this.
It was made clear around Christmas that we needed to factor in more time to allow the
implementation team to familiarise themselves with the game engine. This subsequently
pushed back the coding schedule. Only once the coding had fully begun had we thought of
all the sub tasks needed. The implementation tasks had the most dependencies compared
to the other deliverables, as there has to be basic functionalities before design work. After
the map was completed and assets were put into the game, the implementation developed
very quickly. In the last two weeks of the project our plan did not change. There was editing
needed and formatting, but nothing new started.

http://imozwastaken.github.io/snapshots.html#gantt
http://imozwastaken.github.io/snapshots.html#gantt


fig.3

One of the problems we had with such a flexible project and team architecture is that it was
too open to change so often the design team couldn’t keep up with the changes being made
by the programming team. This could have been avoided in a number of ways, firstly having
an assigned project manager, who was also part of one of the design teams and the
programming team would have kept everyone on the same page. However, that might not
have been possible because that would be a lot of responsibility and work for one person
and would have meant that other team members might not pull their weight as much as they
should. A different way to solve this problem would be to have one person, not the project
manager, who is in both teams to keep everyone on track.
The final solution would be to select a more appropriate architecture for the programming. I
think if we had used the pipeline architecture, then that would have allowed a little more
flexibility and would have meant that we wouldn’t have had to complete all the design work
before beginning coding, it could all be done one after the other, because whilst the
programming team were working on the first section the design team could work on the
second section. This would probably have required more meetings as the design team
wouldn’t have been able to see all the issues the coding might bump into, but it may have
made both jobs a little easier as there would have been fewer changes.



New Changes in Method Selection and Planning
We (as Group 18) have made some changes to the method selection and planning.

Software Engineering Methods
Not many changes have been made since our team also uses the same method as the
previous team. In Assessment 2, we decided to use LucidChart to create the behavioural
and structural diagrams for the UML for our architecture compared to Assessment 1 in which
we used PlantUML.

Team Organisation
We decided to remain our team organisation method which is to split into smaller sub-groups
as we believe this method works best to complete this assessment within the time given.
Again, the majority of sub-groups had 2 or more people. This time, we decided to split tasks
in such a way that every subgroup has some backup members in case more hands are
needed.

We organised ourselves as follows:

Fig. 1. Team organisation.

We colour coded each person to understand the splitting of tasks better. The green code
represents people who are in charge of the task, orange code represents the backups and
red code represents the last backups in case we’re running out of time. The total marks
show that everyone got a fair share of work and nobody was given too much or too little of
work.

Key tasks

Task Start date End date Dependencies

Requirements Elicitation 17/2/2023 23/2/2023 N/A

Initial extended
architecture

17/2/2023 2/3/2023 Requirements

Risk assessment 17/2/2023 23/2/2023 N/A

Implementation 10/3/2023 2/5/2023 Requirements, Initial



Extended Architecture

Architecture Evaluation 21/4/2023 2/5/2023 Implementation, Initial
extended Architecture

We have also made a Gantt chart to illustrate our project schedule.

Fig. 2. Gantt chart to illustrate our project schedule.

The Gantt chart can also be found on our website (weekly Gantt chart).

https://teambeng1.github.io/TeamBPart2.github.io/snapshots.html#new-group-gantts

