
Requirements

Group 21
Generic Games

Josh Thomas
Andrew Palombo

Oscar Gunn
Scarlet Desorgher
Immanuel Ghaly

Madeleine Nielsen

mailto:jt1920@york.ac.uk
mailto:ap2179@york.ac.uk
mailto:sgd516@york.ac.uk
mailto:ihag500@york.ac.uk
mailto:mn1013@york.ac.uk


Interview
We elicited the requirements through interviews with the customer, as the customer could
present their thoughts and opinions in an unrestricted way. It also allowed us to understand
the customer’s needs for the system as well as the core qualities that it should have. We
conducted the interview by asking a set of predefined questions. This ensured that the
information gathered was clear, concise and easy to analyse. However we also used open
ended follow up questions, which provided us with more detailed responses which helped us
to better understand their perspective. At the end of each question we asked the customer to
rate the importance of each requirement that we identified. We did this so that we could
allocate our time appropriately and it also helped us in negotiating conflicting requirements.

Brainstorming
As a group we analysed the information gathered such as the overall context and the target
demographic. We then used this information in conjunction with the product brief to produce
the user requirements [fig.1]. By identifying the target demographic we ensured that the
needs of the users were being satisfied. We then developed the system requirements by
going through each user requirement and brainstorming ideas about what the system needs
to do, in order for that requirement to be met. This method was used so that the system
requirements were traceable, which ensured that we met the needs of the stakeholders and
prevented any gaps or inconsistencies.

Negotiation
During the process of creating system requirements
[imozwastaken.github.io/requirements.html#functional , fig.2] we identified some conflicts,
caused by the differing needs of the stakeholders. In order to resolve these conflicts we
re-evaluated each requirement by considering the project constraints such as time,
technology and personnel and we also consulted the risks involved with each requirement.
We then analysed the importance of each requirement to the respective stakeholder and
then prioritised the requirements accordingly. Through group discussion we then identified
the lower priority requirement and suggested ways to alter it so we could accommodate both
requirements. However, if that wasn’t possible then the lower priority requirement was
removed.

Presentation
The requirements were documented in 3 separate tables for the user requirements
[imozwastaken.github.io/requirements.html#user , fig.1], the functional requirements
[imozwastaken.github.io/requirements.html#functional , fig.2] and non-functional
requirements [imozwastaken.github.io/requirements.html#nonfunctional, fig.3]. The user
requirements were also organised by importance, which allowed us to appropriately allocate
our time during the implementation. The functional requirements were organised by the user
requirement they were traced from and we included an index that references the
corresponding user requirement. This ensured that the implementation met the needs of the
stakeholders, as we implemented the system directly from the system requirements. For the
non functional requirements we included a fit-criteria so that the requirements are verifiable.

http://imozwastaken.github.io/requirements.html#functional
http://imozwastaken.github.io/requirements.html#user
http://imozwastaken.github.io/requirements.html#functional
http://imozwastaken.github.io/requirements.html#nonfunctional


INDEX ID DESCRIPTION PRIORITY

1 UR_SWITCHING_
COOKS

The user should be able to switch between cooks Shall

2 UR_MOVING_CO
OK

The user needs to be able to move the cook to the
cutting, baking, frying and serving stations and the
pantry.

Shall

3 UR_COOK_ACTIO
N

The user needs to be able to interact with the stations
their cooks are standing near

Shall

4 UR_STATION_ACT
ION

While using the station the user needs to be able to
complete an action (i.e. flipping a patty). If they fail
this, they have to restart the step

Shall

5 UR_COOK_STACK The users needs to be able to stack ingredients from
different stations to a cook - essentially a cooks
inventory

Needs

6 UR_CUSTOMER_
VIEW

The user needs to be able to see the waiting
customers, their orders and the recipes of the orders

Shall

7 UR_TIME_CUSTO
MERS

User needs to be able to see how much time has
elapsed since the customer has placed their order

Needs

8 UR_REPUTATION The user starts with 3 reputation points (essentially
HP). These need to be clearly displayed and possibly
can be increased

Shall

9 UR_EARNINGS Users need to be able to collect earnings. Current
earnings shown clearly to the user.

Shall

10 UR_MAX_SERVE User needs to be able to see their maximum number
of customers they have served in endless mode

Shall

11 UR_SCENARIO_TI
ME

In scenario mode the user should know how long it
took them to complete the scenario

Shall

12 UR_USER_EXPER
IENCE

The user should be familiar with the design of the
game, and it should be simple and intuitive.

Should

fig.1



fig.2



fig.3


