Testing

Group 18

Team B

Olivia Betts
Zac Bhumgara
Nursyarmila Ahmad Shukri
Cameron Duncan-Johal
Muaz Waqas
Oliver Northwood
Teddy Seddon



A) Over the course of our project, we used a combination of automated unit tests and
manual testing. Generally, automated testing was more made use of for the classes for food
and actors, whereas manual testing was used for classes for the different screens in the
game and what they would render. We used a mixture of whitebox and blackbox testing, but
the majority of our blackbox tests were manual. Bearing the testing pyramid in mind, we
focused mostly on unit tests - these were also the easiest to implement.

The first step we took was assigning roles to everyone in the group. In terms of
testing, Muaz and Teddy were assigned to make and run the tests, as well as complete the
testing report. We decided to use Junit 4 for our automated testing. Junit makes it easy for
the machine to recognise the presence of a test due to the @Test keyword, as well as
allowing us to use the assert keyword to check for preconditions.

The first stage was to create an environment in which we could start testing the
original game. Therefore a GdxTestRunner class was made, which allowed us to run the
tests using the Headless configuration. This was useful, because it meant that there was no
actual graphics of the game being produced, and it would be easier to just test the logic.

Upon adding the correct dependencies, the first tests which we made were asset
tests. These would check for the presence of assets essential to the running of the game in
the assets folder. Therefore, they were important for the overall usability of the project. We
made asset tests for the assets related to recipes and customers, as well as the music.

After the asset tests were complete, we moved onto logic tests. We started with
testing the individual classes for correctness and usability e.g. Burger class, Customer class.
This allowed for easy detection and correction of issues at class level. We would test all the
methods in the class and make sure that they were all working as expected. We also put in
some incorrect cases and made sure that they failed and the game had a suitable way to
counter this i.e. it didn’t just crash.

After that, we planned to move onto testing some of the user input elements.
Unfortunately, at this point, we came across a problem and that was that most of the code
was in the GameScreen class, which had not made any use of lazy evaluation. This meant
that the code was not very testable. Every time the GameScreen class was called, the
spriteBatch was called alongside it (but spriteBatch could not be null) - for this reason, we
struggled to run the Junit automated tests in Headless configuration. Our solution for this
was to test most of the GameScreen class using manual testing. We did end up making
some tests for the GameScreen class, but they did not run as expected. For this we also
implemented Mockito. We were unable to automatedly test most of the Ul elements.

We then moved onto manual testing. Using the requirements, we created tests for all
of the requirements, as it is good practice to have tests for each requirement. For all the
tests we created success and failure scenarios and tested them all, documenting thoroughly
in a Word document, and adding pictures to explain the current state of the game.

Throughout the development of the game, we continued testing our added code to
make sure that we had not broken previous functionality with the new additions.

At the end of the testing, to make sure that we had covered every requirement, we
created a traceability matrix, as well as a testing report. Both of these documents were
useful in helping us to figure out the overall performance of our project for our tests.

In terms of the overall timing of the tests, we carried out most of the asset tests at the
start of the testing cycle. This was to ensure that all necessary assets were present before
proceeding with logic tests. The logic tests were then conducted during the development
process, to double check if the new implementations are correct. The manual testing was
done at the end of the development process, once the game was approaching completion.



B) Firstly, we made a traceability matrix, to link our tests to our requirements.
This meant that it was much easier for us to keep track of what requirements
we have already tested, and which tests this is contained within. We found this -
to be a more representative indicator of what and how much we needed to test  “4—
as compared to code coverage. One the traceability matrix, the failed or 22
incomplete tests were starred. Both the manual and automated tests are visible =
on the traceability matrix. The full traceability matrix can be viewed on our 25
website (URL provided on next page), but an excerpt of the traceability matrix —

can be seen on the right:

NS

x | = [x [x [x

The first tests we implemented were asset tests. For these, we checked for
the presence of the assets essential for the game to run. This mostly
consisted of items of food. We had 9 main asset tests, which checked for all
the .png images for the food and the .mp3 file for the music in the
background of the game. 100% of the assets tests passed, but as they are
not actually testing the code, we had 0% line coverage with them.

We then moved onto logic testing the food classes. Each of the four food

classes (salad, burger, jacket potato and pizza) all had 4 methods in them - 3 getter
methods, for the recipe, the texture and the speech bubble texture. The 4th method would
check whether the necessary ingredients were present

to make the item. In our automated unit tests, we 152 ms
checked the getter methods to see if they were actually m.mygd s.RecipeTe
returning the attribute required. Our last test was to testGetTexture

check the correctness of the class and its corresponding testHasBurger

logic. For example, we checked to see if the ingredients
for a burger (patty, lettuce and buns) actually combine to
make a burger. We then checked some other cases too,
which included inputting the ingredients into the stack
into a different order, adding wrong ingredients and adding duplicate ingredients. 100% of
tests for all four of these classes passed and we achieved 46% line coverage.

testGetSpeechBubbleTe:

testGetRecipe

The logic testing with the cook and customer was a bit more difficult due to
the fact that a lot of their methods were written in the GameScreen class.
The methods in the cook and customer class were tested successfully, with
95% and 100% line coverage respectively. All tests for the customer class
passed, however, for the cook class the test for flipping the patty did
not work with our dependencies. For this reason, we have commented
it. The cook and customer movement were tested successfully, as well
as the customer’s ability to generate an order, and move offscreen.

We tested for the difference in buttons if you hover upon them
with a cursor in all of the screen classes. However, we were
unable to test most of the methods in the screens classes
due to the difficulties in testing Ul. Unfortunately most of the
game code was in the GameScreen class, so instead to




make up for our lack of automated testing, we performed manual tests to fulfil the rest of the
requirements.

We have a few non-working tests in our screen test classes. These do not work due to the
fact that we have not used lazy evaluation whilst writing our code. Therefore, everytime
GameScreen was called, it would ask for a SpriteBatch. However, as we were running the
game in Headless configuration, the spriteBatch would be null. This would give an error and
it would not allow the test to run. Due to time constraints, we were unable to refactor the
code sufficiently to combat this. A couple of other tests in the SettingsScreenClass were also
not completed; this was also due to time limitations.

As you can see from our report, we achieved 30% class coverage overall. The full coverage
report is on our website and the URL has been provided on the next page. Obviously, this
was a low percentage, therefore we carried out a large number of manual tests to properly
test our game. These have been fully documented on our website, including the steps we
took, the expected and the actual outcomes. This can be found on our website and the URL
is linked in the next question. In this way, we managed to finish off our traceability matrix, by
linking every requirement to a test.

Overall Coverage Summary

all classes 30% (21/70) 21.4% (63/294) 18.2% (332/1820)

Coverage Breakdown

PN
com.mygdx.game 50% (3/6) 38.1% (8/21) 43% (58/135)
com.mygdx.game.Food 100% (6/6) 34.4% (11/32) 46.8% (73/156)
com.mygdx.game.Screens 6.8% (3/44) 3.6% (6/165) 1.4% (16/1121)
com.mygdx.tests 80% (4/5) 54.8% (17/31) 63.7% (107/168)
com.mygdx.tests.RecipeTests 0% (0/4) 0% (0/20) 0% (0/88)
com.mygdx.tests.ScreenTests 100% (5/5) 84% (21/25) 51.3% (78/152)

For our manual tests, we followed a structural layout in terms of documenting the tests.
Every test (like the automated tests was given a unique code and name), so they could be
easily referenced in the traceability matrix. This was followed by a short description and the
requirement(s) which the test relates to. Following this, we had 4 rows, for steps taken in the
test, expected outcome, actual outcome and whether the test passed or failed. We then had
a row for failure cases, edge cases and other notes, just to explain what other cases were
tested for, which could not be inferred from the steps. Finally a final row for some pictures to
show proof of testing. Below is an example of one of the manual tests and the corresponding
documentation. The full documentation can be found on our website.

Identifier TEST_UR_REPUTATION (2.8)

Short Description This test will check whether there are reputation points, and if they are clearly displayed.

Related Requirement(s) | UR_REPUTATION, FR_REP_DISPLAY, FR_REP_LOSS

Author Muaz

Steps FR_REP_DISPLAY: Start the game and see if the reputation points are shown graphically.

FR_REP_LOSS: Do not serve a customer in time.




Expected Outcome FR_REP_DISPLAY: There should be reputation points clearly visible at the top.

FR_REP_LOSS: You should lose a reputation point.

Actual Outcome As above

Failure/Edge Cases Extra test to see if the reputation points can increase as well (due to powerup).

If you run out of reputation points, the game should end, which it does.

Status (Pass/Fail) PASS, PASS

Pictures

one back from powerup (3)
REF i REF %% REF %494

Notes

The powerup to gain a reputation point back spawns randomly.

It is important to stress that our testing continued throughout the development of our project.
Every time someone in the implementation team would add a new functionality, we would
run our tests to make sure that the previous code was not affected was not affected by the
new commits. Running our tests was very intuitive and it meant that after the tests were
made then anyone could run them, without much prior knowledge. At the end of our
implementation period, we ran the automated tests again, and carried out all the manual
tests and analysed the results. The analysis of our results showed that in general the
testability of our game is not great. Most of the game logic is contained within Ul classes
which are untestable. Therefore our tests were not fully complete, but every effort was made
to make them as complete as we could with the previous group's coding. However, our
manual tests proved that most requirements of the game were met to a high standard.

UR_USER_EXPERIENCE, UR_LICENCE, UR_READABLE_CODE and
UR_FAMILY_FRIENDLY_CONTENT are all requirements which cannot be manually tested
definitively per say. The opinion on all these is subjective, so instead we have made
maximum efforts to try and achieve all of those requirements as explained by the client,
throughout the production of our product. Nevertheless, we have still linked some tests to
these requirements, to show how our game is easy to use. This can be found in the manual
testing documentation.

We ran some integration tests through the use of continuous integration. However, this is
explained in more detail in the continuous integration section.

In terms of future maintenance, it would be beneficial to refactor the code and move some of
the code from the Ul classes into individual object classes. This would make the overall
coverage of the code better as well. However, overall our testing was a success due to the
fact that we were successfully able to test for all our requirements and the tests proved that
we achieved the majority of them.

Reputation points at start (3), then after losing one due to running out of time (2) and then gaining




c)

Documentation of Manual Testing:
https://teambeng1.github.io/TeamBPart2.github.io/pdf/Documentation%200f%20Manual %20
Testing.pdf

Traceability Matrix:
https://teambeng1.github.io/TeamBPart2.github.io/pdf/TraceabilityMatrix.pdf

Coverage Report:

https://teambeng1.github.io/TeamBPart2.github.io/htmIReportTesting/htmIReportTesting/inde
x.html

https://teambeng1.github.io/TeamBPart2.github.io/img/coveragereport.png


https://teambeng1.github.io/TeamBPart2.github.io/pdf/Documentation%20of%20Manual%20Testing.pdf
https://teambeng1.github.io/TeamBPart2.github.io/pdf/Documentation%20of%20Manual%20Testing.pdf
https://teambeng1.github.io/TeamBPart2.github.io/pdf/TraceabilityMatrix.pdf
https://teambeng1.github.io/TeamBPart2.github.io/htmlReportTesting/htmlReportTesting/index.html
https://teambeng1.github.io/TeamBPart2.github.io/htmlReportTesting/htmlReportTesting/index.html
https://teambeng1.github.io/TeamBPart2.github.io/img/coveragereport.png

